Numerical Study of Curved-Shape Channel Effect on Performance and Distribution of Species in a Proton-Exchange Membrane Fuel Cell: Novel Structure

Authors

  • Narmin Bagherzadeh Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran.
  • Sajad Rezazadeh Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran.
Abstract:

In this paper, a three-dimensional, single-phase proton-exchange membrane fuel cell (PEMFC) is studied numerically. Finite volume method was used for solving the governing equations and, consequently, the numerical results were validated by comparing them with experimental data, which showed good agreement. The main objective of this work is to investigate the effect of a novel gas channel shape– by applying sinusoidal gas channel- on the cell performance and mass transport phenomena. Some parameters such as oxygen consumption, water production, protonic conductivity, and temperature distribution for two cell voltages were studied, and the results were compared with respect to conventional and new models.    The results indicated that the new novel model showed better performance than the conventional model, especially at low cell voltages, causing an increase in oxygen consumption and water production. Therefore, based on a number of investigated relations, a higher rate of current density was obtained, thus enhancing the fuel cell performance. This is because the incoming species path to the gas channels in the  new model becomes longer. Therefore, the diffusion of the species toward the electrochemical reaction area increased.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The simulation of novel annular shape on the Performance in Proton Exchange Membrane Fuel Cell

In this article, one-phase and three dimensional computational fluid dynamics analysis was utilized to investigate the effect of annular field pattern of proton exchange membrane fuel cells (PEMFC) with different geometry on the performances and species distribution. This computational fluid dynamics code is used for solving the equation in single domain namely the flow field, the mass conserva...

full text

Numerical study on the performance prediction of a proton exchange membrane (PEM) fuel cell

An electrochemical analysis on a single channel PEM fuel cell was carried out by Computational Fuel Cell Dynamics (CFCD). The objective was to assess the latest developments regarding the effects of change in the current collector materials, porosity of electrodes and gas diffusion layer on the fuel cell power density. Graphite, as the most applicable current collector material, was applied fol...

full text

Numerical Investigation of the Effect of Gas Diffusion Layer with Semicircular Prominences on Polymer Exchange Membrane Fuel Cell Performance and Species Distribution

A three-dimensional computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both gas distribution flow channels and Membrane Electrode Assembly (MEA) is developed. A set of conservation equation is numerically solved by developing a CFD code based on the finite volume technique and SIMPLE algorithm. In this research, some parameters like oxygen consumption, water...

full text

Dynamic investigation of hydrocarbon proton exchange membrane Fuel Cell

Sulfonated polyether ether ketone (SPEEK) is categorized in a nonfluorinated aromatic hydrocarbon proton exchange membrane (PEM) group and considered as a suitable substitute for common per-fluorinated membranes, such as Nafion, due to wider operating temperature, less feed gas crossover, and lower cost. Since modeling results in a better understanding of a phenomenon, in this study a dynamic o...

full text

The effect of inclined radial flow in proton exchange membrane fuel cells performance

Computational fluid dynamics analysis was employed to investigate the radial flow field patterns of proton exchange membrane fuel cells (PEMFC) with different channel geometries at high operating current densities. 3D, non-isothermal was used with single straight channel geometry. Our study showed that new generation of fuel cells with circle stack with the same active area and inlet area gave ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  10- 21

publication date 2018-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023